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Stability Criteria for Elastic Materials

by

%..N. Sawyers and R.S. Rivlin

Center for the Application of Mathematics

Lehigh University

Bethlehem, Pennsylvania

Abstract

Conditions are derived which are necessary for

stability of incompressible elastic materials. These

are obtained by considering small shearing displace-

ments superimposed on a finitely deformed state of

the material.
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1. Introduction.

In the classical elasticity theory for infinitesimal

deformations, certain restrictions r.ust be placed on the elas-

tic moduli to ensure that the material be stable. For example,

in the case when the material is isotropic and incompressible,

the shear modulus p must be positive. This condition en-

sures that the velocity of propagation of a plane sinusoidal

shear wave be real. If it were violated, a plane spatially- V
sinusoidal, shear disturbance, of initially infinitesimal

amplitude, would increase in amplitude with time even though no

forces are applied to the material. Accordingly, due to the

presence of Brownian fluctuations, the material could not exist

in the undeformed state.

Similarly, in the case of incompressible elastic mater-

ials which undergo finite deformations, material stability

requires that the strain-energy function be such that, for

each state of pure homogeneous deformation for which it is

assumed to be valid, the velocities of plane sinusoidal shear

waves of arbitrary direction of propagation and infinitesimal

amplitude must be real.

It has been shown that this implies that the strain-

energy function W per unit volume must satisfy the conditions

W + X I2  > 0
1 A 2

and

2 +4>22

1 AW2 1 A
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where XA (A=1,2,3) are the principal extension ratios for

the pure homogeneous deformation, WA and WAB (A,B = 1,2)

denote the derivatives •W/DIA and 2W/I A IB respectively

of W with respect to the strain invariants 1 and 12

defined by

=A,+ 2 2  =,2t2 2 2 2 2
32 +A 2 + A23 31 11+2I, A

The first of these conditions, which was obtained by

Ericksen [1], ensures that a shear -re, polarized in the

principal direction corresponding to the extension ratio A

and propagated in an arbitrary direction perpendicular to

this principal direction, shall have a real velocity of propa-

gation. The second, which was derived by Sawyers and Rivlin

[2], ensures that a shear wave, polarized in the plane perpen-

dicular to the principal direction corresponding to the exten-

sion ratio XA and propagating in an arbitrary direction in

this plane, shall have a real velocity of propagation.

In the present paper, it is shown that both of these con-

ditions can be derived from a single assumption. We consider

that an infinitesimal simple shear is superposed on the pure

homogeneous deformation. The plane of shear is a principal

plane for the pure homogeneous deformation and the direction

of shear is an arbitrary direction in this plane. The assump-

tion is made that the incremental shear modulus is positive.

I.

-2 " I
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2. Basic Equations

* We consider deformations which result from the super-

SI position of an infinitesimal deformation on a finite pure

homogeneous deformation. Let denote the coordinates in

a rectangular cartesian system x of a generic particle of

the body in its undeformed state. Let xi be the coordinates

of the same particle in the deformed state. We may then write j
xi = Xi + Eui (I)

where c is a small parameter whose squares and higher

powers may be neglected, and

XI = 1 %i , X2 =X 2 •2  , X3 = X3g3 (2)

The X's in Eqn. 2 are the extension ratios associated with

the finite deformation. In Eqn. 1, the displacements u i

are, in general, regarded as functions of X1 , X2 , X3

The finger strain tensor C , associated with the

resultant deformation, is given by

x xi _ - aXk M z
Cij -ý m r.m a m ým X ik j,z (3)

The usual summation convention applies to repeated sub-
scripts. The comma notation ,i is used to denote partial
differentiation with respect to X .
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We write

c Cij - + Ccij (4)

and substitute from Eqns. 1 and 2 into 3 to find

2 C 2 2C1].= 1' 22 , C33= x3,

(5)

C :L= 0 for i ý j

and

2 2C = 1(6 iiuj, 1+ +Jl,1 + (6i 2 u.,+ 6u+
6. u.i 2 i2 j,2 j2;,2

(6)

+ X2 (6 u + 6 )
3 13 j,3 j3ui;3

where 6i is the Kronecker delta
1J

Three scalar invariants TA (A=1,2,3) of the tensor

C.. are given by

C: ii, i.2 = Z(riiCjj - - CCi .det) (7)

Writing

IA IA + A ' A 1,2,3 (8)

and substituting from Eqns. 4, 5 and 6 into 7, we find
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I i A .2 +X2&.2 X2 2.X2+X2.X2+X.2.X2 i X 2X2X2 (9)
1 1 2" 3' 2 23 3 1 12 2  32 22 ()3

and

i= 2 1  2u2 ,2 + 32u3 ,

=2 {= (~+~u 1 2 3 2 3 1)u 2 2 + 3 1X 2A u3,3}10

S2 2 32 2 (u + u + u33
"13 2I 3 1,1 2,2 3,3)

From Eqns. 8, 9 and 10, it follows that the condition

T3 = 1 for a deformation to be isochoric yields

3

X A2 2= ad u =0
12 3 and 3k,k (i)

Let Ni and N!i , respectively, denote the components of

the unit vectors normal to a surface in the material before and

after it has undergone the infinitesimal superposed deformation.

Then (see [31, for example)

N[i = N. + eni (12)

where

n. NNNU - Nu (13)
1 i k k~ k,Z. k k,i

From Eqn.1 we readily obtain, neglecting terms of

higher degree in c than the first, the relation

-_aXka =) _ a_@ (14)

ax ak kj aX
k3
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The strain energy W per unit volume for an isotropic

incompressible elastic material depends on the strain Cij

only through the invariants Ii and Y2 , so that

I =W(TI,T2). The Cauchy stress tensor T.- is then given by

E.ij = 2[(W + W )Cfi j - 2i C ik*kj - P6.. (15)

where P is an arbitrary hydrostatic pressure and we use

the notation

FA ,W/31A A = 1,2 (16)

Noting that the invariants given by Eqn. 9 are those associa-

ted with the finite deformation, we make use of Eqn. 8 and

expand W- and W2 in a power series about 1 and 12.

Thus,

W1 = IV + E(W 1 1i1 + W1 2 i 2 )

(17)

W2 = W2 + E(W12il + W2 2 i 2 )

where

WA2)) , A,B = 1,2 (18)WA A AI,12), 2 AB =•~l

1TA1B)
1 2
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Writing

ij= + i = p + sp (19)

and substituting from Eqns. 4, 8, 17 and 19 into 15 , we

find

Z = 2[(W1+ IW 2 )Cij- W2 Cik Ckj - ij (20)

and

a.= 2[(W+ IlW)i - W2(Cikckj+ cikCkj)

+ I(W 2 + W11 )i1 + W12 (,1i 1 + i 2 ) + W2 2 I 1 i 2 ICij (21)

- (W1 2 il+ W2 2 i 2 )CikCkj] - Peij

The traction Ti acting on a surface whose unit normal
1

is Ni , and measured per unit area of that surface, is given

by

[ Writing T. = T..+Ns. (23)
S1 1Trtn g T i + Et i (23)

and substituting from Eqns. 12 and 19 into 22 yie.'ds

T.i = .ij.N. t.i = ..ijN. + .ijnj (24)

1.J i 1
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In the absence of body forces the equation of

equilibrium is

_0 (25)

Substitution from Eqns. 14 and 19 into this yields the

two equations

F.=jj 0 and a u k~j ij,k =0 (26)
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3. Some Preliminary Results

We now assume that the superposed infinitesimal deforma-

tion is a simple shear in the plane perpendicular to the 3-

direction.

The displacement ui associated with this deformation is

given by

U1 = K(X 2 CosO - Xlsine)cos6

u2 = K(X 2 cos8 - XlsipO)sine (27)

u3 0

where K is the amount of shear and 0 is the angle between

the direction of shear and the xl-axis, as shown in Fig.l.

We remark that the displacement described in Eqn. 27 satisfies

the incompressibility requirement given by Eqn.ll.

If K is positive, then the direction of shear is in

the direction of the unit vector K with components

cose , K sine K = 0 (28)

1 2 ' 3

Let N be a unit vector in the plane of shear perpendicular

to K ,the components of N being given by

NJ sine , N2 = cos , 3= 0 (29)

We consider a material plane in the body which has undergone



the pure homogeneous deformation described by Eqn. 2. The

unit normal N to this plane after the superposition of the

infinitesimal shear is given by Eqn. 12, where, from

Eqns. 13, 27 and 2L',

n 0 (30)

We substitute from Eqns. 27 into 6 and .0 and obtain

c = -2A2K sinecosO , C 2D2K si,.cosO

S= K(A 2Cos2 - A2sin 2 0) , c 3 = c31 =c 3  =0, (31)

12 2 122 1 3

A 2 i., 2X 2Kc sin~cosO(X 2 _-A2

We substitute from Eqns. 5 and 9 in Eqn. 20 and obtain

the components of the Cauchy stress associated with the

finite homogeneous deformation. Thus

E = 2X2 {, 1 + (X2 + X2 )2 -

Z22 2A2 111 + (X3 + X.2)W 2) - P (32)

33 2A2 J + (X2 + X2 P p

=33 3 1 2 P

23 31 0

..........................
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Similarly, substitution from Eqns. 5, 9 and 31 in Eqn. 21

gives the additional stresses that arise from the deforma-

tion described by Eqn. 27. Thus,

Sl1 - 4KX1sin0cose W.+X W2+(x-x2) W1 +2x 3W 1 2
4

x3 W2 2 + X2 (wul÷A3w -) P

o22. 4<x2sineos[W1+ X~w2 _2()2_-2) 1 Wll+ 2X2 W12.

+ 22 + I2 + 13+22) - p (33)
3 22 1' 12 3 22j

2 . 2 r22[
a3= 43X sinecose(-X)W+W+(2+2+X3)W12

33 3 2 1 L 2  1 l 2  312

S3 2 W (Xl.2)] -p

01 2K= 2 Cos 2_ 2O-?2sin 2 e) [W +,w 2 ](•2 2• 1 1cos 21

G23 = 31= 0

Bearing in mind that AiA 2 ,x 3, K and 0 are constants,

it follows that the stresses given by Eqns. 32 and 33 satisfy

the equilibrium conditions of Eqn. 26 pr:vided P and p are

constants.

The traction acting on a plane with unit normal N can

be obtained by substituting from Eqn. 29 into 24. By making

use of Eqn. 30 and the fact that certain components of the

stresses vanish (see Eqns. 32 and 33), we obtain

T1 -3ine , T2 Cosea 2 2 , T = 0 (34)
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and

tI = -sin~al, + coSOI2

t2 = -sinea 1 2 + cosOC2 2  (35)

t= 0
3

Let • denote the component of the traction vector inI the shear direction K Then, from Eqn. 23,

S T-K (T +Ctt)K. (36)

Writing

and substituting from Eqns. 28, 34, and 35 into 36, we obtain

S =sinecosez (Z2El

(38)

s sinecose(o22- a 11+ a 1 2 (cos 2e-sin 2)

Expressions for S and s in terms of material properties can

be obtained by substituting from Eqns. 32 and 33 into 38.

Introducing the notation

M = 2(WI+X3W2 )

:- (39)

S2 11 1 2 '3 22
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we then obtain

S .- X-2,_)M SineCoSe

+ (X 1 -X 2 ) 2 m sin2 ecos 2 el (40) !

*21

:1 2 2

(A - s n O os( 0

1 2I
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4. Criteria for Material Stability

In order that the material be stable for given values of

XX2 , and X3 , it is necessary that the superimposed -ac-

tion have a positive component in the direction of the super-

imposed shear deformation, i.e., the shear modulus must be

positive.

According to Eqns. 36 and 37, s is the extra shear

traction that is required to produce the deformation given by

Eqn. 27. Since K is the amount of shear, we define the shear

modulus V by

S= •/K (41)

Then from Eqn. 40 we obtain

.1M X S 2 2 2^
1M(Asin 2 O+A2cos2 e)

+ (X1 -X2 ) 2 m sin2 ecos 2e (42)

and it follows that a necessary condition for material stab-

ility is p > 0 for all possible values of . In particu-

lar, if e assumes any of the values (0,2,ff,21) then P > 0

if and only if

M > 0 (43)

For the following discussion we assume that Eqn. 43 is

satisfied.

1/.4- ------ ,- -~ = -~ --
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Then if A, 2 , it follows that p > 0 regardless

of the value of m. But if X1 I X2  and if

2 2 (4m(XI-A 2 ) = - M(X+A 2 ) (44)

then Eqn. 42 becomes

11= M( 1 sin2 O-A2 ccs 2O) (45)

and it follows that p is non-negative for all values ofF and vanishes if

tans = - iX27X7 (46)

It is clear from Eqn. 42 that for any fixed value of 6 ,

(other than those for which either sin 8 or cos e vanish)

22
incrA22 e resases, Thus, increases and decreases as

m(X- X22 decreases. Thus, the condition p > 0 for all

values of 0 is satisfied if

2(Al+ A2 )2
m>- 2 (47)

However, if m(XI-,X < M(Xz+X then p < 0 for 8

given by Eqn. 46, and we conclude that the material is in-

herently unstable.

We have derived two conditions that are necessary for

material stability. By substitution from Eqn. 39 in 43 and

47, these are found to be
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W1 + x2 I >03W2

(48)
l+ 2X 2 4 I 1 +W

11 312 322 2 21- x2)2

Further conditions analogous to those in Eqn. 48 can be

derived by considering superposed shearing deformations similar

to that of Eqn. 27, for which the shear planes are the 23 and

I 31 planes, respectively. An analysis which rarallels that

given above then yields necessary conditions for material stab-

ility in the forms

W + X2 W > 0
1 1 2

(49)
2

IN+2A +w X 1N
1 + 1 12 1 22 2 (X2x_) 2 3

and

w + X > 0
1 2 2

(50)

11 2 2W12 222 2 (A3 A1 )2

The conditions given in Eqns. 48, 49 and 50 may be re-

cast in the succinct forms shown in the Introduction by

employing Eqns. 9 and 11. A
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Figure Caption

Figure 1. Geometry of a small superimposed shearing deforma-

tion.
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